Local and regional movements of the little bustard: application to the prediction of the risk of collision with power lines (Metodological approach and main conclusions).

Francisco Moreira¹, Rita Alcazar², Jorge Mestre Palmeirim³, 1 Centre for Applied Ecology "Prof. Baeta Neves", Institute of Agronomy, Technical University of Lisbon, Portugal. 2 League for the Protection of Nature, Portugal. 3 Centre for Environmental Biology, Foundation of the Faculty of Science, University of Lisbon, Portugal.

Foto: Luis Venâncio

Acknowledgements

- EDP (Fundo EDP para a Biodiversidade), for financing the project;
- All people from the team (LPN, FFCL, ISA);
- ICNB and SPEA, for providing data on population densities (LIFE project) and authorisation for bird captures (ICNB);
- SPEA, Quercus, ICNB, EDP for providing data on collision registers, for model validation;
- Graham Martin (University of Birmingham), for his willingness to attend and contribute to this seminar;
- Other invited speakers;

The study species

- The little bustard is grassland bird typical of agricultural landscapes with low intensity farming;
- The most viable population is found in the Iberian Peninsula which holds more than half of the world's population;

The problem

• This is the threatened species with more collisions with power lines in Portugal.

Overall objective of the project

• Build a map of the risk of collision of little bustards with power lines in Baixo Alentejo, to support decision-making regarding mitigation measures.

Main conclusions

Breeding

n

Winter

 Larger collision risk in winter (larger amount of territory with high collision risk)

Main conclusions

 Spatial pattern of collision risk allows the identification of critical areas of maximum impact in the case of power line establishment

Average risk of collision (all seasons)

Main conclusions

 The location and regional density of power lines can be used to identify existing critical areas to implement minimisation measures

Identification of critical power lines

- Daily activity patterns
- Time of day with higher risk of collisions

Hour of day

• Migratory routes and distance

- Migratory movements occur mostly during night
- Implications for wire marking schemes to reduce collisions

 Male territories, annual fidelity, breeding strategies

This work was supported by

